CS MidTerm Exam 4/1/2004 Name: KEY. Page Max Score Total 139


 Lauren O’Neal’
 5 years ago
 Views:
Transcription
1 CS MidTerm Exam 4/1/2004 Name: KEY Page Max Score Total 139 %
2 INTRODUCTION, AI HISTORY AND AGENTS 1. [4 pts. ea.] Briefly describe the following important AI programs. Give the last names of their authors, and briefly state why they were important a. General Problem Solver Herbert Simon and Allen Newell The first reasonin system that accepted and used domain specific information to solve a variety of problems. It was an improvement over the Logic Theorist program that could only prove theorems b. MYCIN Buchanan, Shortliff, Fiegenbaum The first widely successful medical diagnosis systems used to diagnose diseases given information from blood tests and other patient data. Performed as well as undergraduate medical students 2. [3 pts. ea.] Briefly describe or define the following: a. Artificial Intelligence The study of programs that exhibit intelligent behavior b. Heuristic A rule of thumb that often is correct, but is not guaranteed to be correct 3. [4 pts.] Name two features that distinguish AI programs from nonai programs? Sophisticated problem solving, such as search, planning, inference, etc. Uses knowledge Can learn 1
3 UNINFORMED SEARCH 4. [4 pts.] The figure below shows a treeshaped search space. The search starts with the node labeled 0 on the queue. The only node containing a goal state is the node labeled B2a. List, in order (nodes are opened lefttoright), the nodes that will be examined by iterative deepening depthfirst search. 0, 0, A, B, C, 0, A, A1, A2, B, B1, B2, C, C1, C2, 0, A, A1, A1a, A2, A2a, B, B1, B2, B2A 0 A B C A1 A2 B1 B2 C1 C2 A1a A2a B2a C1a C1b INFORMED SEARCH 5. [3 pts.] Briefly describe or define admissible heuristic A heuristic used in A* search for estimating the cost to reach the goal node from the current node that never overestimates the cost 6. [4 pts.] How does A* search improve upon bestfirst search? A* uses the actual cost from the start node to the current node and only estimates the remaining distance to the goal node, while bestfirst search estimates the entire cost of a path to the goal node from the start node and going through the current node. In other words, A* factors in the known costs that it can, allowing A* to give a better estimate. A* also imposes a constraint that the heuristic never overestimates the actual cost of reaching the goal node from the current node 2
4 7. [30 pts.] Below is a map of the cities around Bucharest, and a chart of straightline distances to Bucharest. Show the search tree generated by A* searching for a path from Oradea to Bucharest using the straightline heuristic for h(n). Show f(n), g(n), and h(n) for each node. Number your nodes by the order in which they are examined. Oradea Zerind Arad Timisoara 111 Lugoj 70 Mehadia 75 Dibreta Rimnicu 146 Craiova 97 Fagaras 138 Pitesti Straightline distance to Bucharest Arad 366 Fagaras 178 Mehadia Bucharest 0 Giurgiu 77 Neamt 234 Timisoara 329 Craiova 160 Hirsova 151 Oradea 380 Urziceni 80 Dobreta 242 Iasi 226 Pitesti 98 Vaslui 199 Eforie 161 Lugoj 244 Rimnicu 193 Zerind Giurgiu 211 Neamt 87 Urziceni Bucharest Iasi 92 Vaslui Hirsova 86 Eforie Zerind 445= Oradea 682 = Oradea 380 = = Arad 657 = = Rimnicu 537 = Rimnicu 424 = Pitesti 426 = Craiova 626 = City F(n) = g(n) + h(n) 5 Fagaras 428 = Craiova 537 = Bucharest 429 = = Bucharest 761 =
5 LOCAL SEARCH 8. [3 pts.] Briefly describe how crossover works in genetic algorithms Crossover randomly swaps sections of the bits encoding two parents 9. [3 pts. ea.] Give the name (and very briefly state why) of the algorithm that results from each of the following special cases: a. Simulated annealing with T = 0 at all times. Firstchoice hill climbing: chooses the first randomly chosen successor that improves over the current state. b. Genetic algorithm with population size N = 1. Stochastic hill climbing: probabilistically (1/fitness) choose 1 successor node GAME PLAYING SEARCH 10. [3 pts. ea.] Briefly describe or define the following: a. Zerosum game A twoplayer game where one player must win and the other player must lose, or there is a draw, in this case, if the reward for winning (e.g., +1) is equal in magnitude to the penalty for losing (e.g., 1), then the utilities (penalties and rewards) of the players sum to zero. b. Horizon effect When using minimax game playing analysis, one can only examine the search tree so far, so one must use a cutoff for the search depth. There is always the chance that just beyond that cutoff i.e., the horizon) are a series of moves that are disastrous, but cannot be detected. 4
6 11. Consider the game search tree in the figure below. Assume the first player is the MAX player and the values at the leaves of the tree reflect his/her utility. MAX A 4 MIN B C 4 2 MAX D E F G MIN H I J K L M N O a. [20 pts.] Compute the minimax values for each node in the tree. b. [2 pts.] What move should MAX choose? Why? MAX should choose B, because B will maximize MAX s outcome, assuming that MIN and MAX are optimal players c. [8 pts.] Mark or list all nodes that are cut off from the tree and are never explored by the alphabeta procedure. Assume that successors are expanded lefttoright. d. [3 pts.] In general, what order should nodes be examined in order to obtain the greatest benefit from alphabeta pruning? For MAX, nodes should be examined in descending order For MIN, nodes should be examined in ascending order PROPOSITIONAL LOGIC AND INFERENCE 12. [3 pts. ea.] Briefly describe or define the following: a. Inference The process of deriving new facts from existing ones b. Soundness An inference method only makes correct inferences from a knowledge base c. Completeness An inference method makes all possible inferences from a knowledge base d. Entails A knowledge base entails a sentence if the sentence is derivable from the knowledge base. Also: a KB entails a sentence iff in all models where KB is true, so is the sentence 5
7 13. [20 pts.] Use a truth table to show by enumeration that KB S. KB: P & Q & ( P R) & ( Q R S) P Q R S ( P R) ( Q R S) KB T T T T T T T F T T T T T F T F T T T T F F F T T T T F T T F T F T F F T F T T T F T F F T F T F F F F T T T F T T T F T F F F T T F T F F T F T F T T F F F T F T T F T T F F F T F F T F F T T F T F F F F T F F F F F T T F Since every time the KB is true (shown in bold), S is true (also shown in bold), then KB S. 6
Informed search algorithms. Chapter 4, Sections 1 2 1
Informed search algorithms Chapter 4, Sections 1 2 Chapter 4, Sections 1 2 1 Outline Bestfirst search A search Heuristics Chapter 4, Sections 1 2 2 Review: Tree search function TreeSearch( problem, fringe)
More informationAI: A Modern Approach, Chpts. 34 Russell and Norvig
AI: A Modern Approach, Chpts. 34 Russell and Norvig Sequential Decision Making in Robotics CS 599 Geoffrey Hollinger and Gaurav Sukhatme (Some slide content from Stuart Russell and HweeTou Ng) Spring,
More informationProblem solving and search
Problem solving and search hapter 3 hapter 3 1 eminders ssignment 0 due 5pm today ssignment 1 posted, due 2/9 ection 105 will move to 910am starting next week hapter 3 2 Outline Problemsolving agents
More informationCourse Outline Department of Computing Science Faculty of Science. COMP 37103 Applied Artificial Intelligence (3,1,0) Fall 2015
Course Outline Department of Computing Science Faculty of Science COMP 710  Applied Artificial Intelligence (,1,0) Fall 2015 Instructor: Office: Phone/Voice Mail: EMail: Course Description : Students
More informationSOLVING PROBLEMS BY SEARCHING
3 SOLVING PROBLEMS BY SEARCHING In which we see how an agent can find a sequence of actions that achieves its goals, when no single action will do. PROBLEM SOLVING AGENT The simplest agents discussed in
More informationSearch methods motivation 1
Suppose you are an independent software developer, and your software package Windows Defeater R, widely available on sourceforge under a GNU GPL license, is getting an international attention and acclaim.
More informationMinimax Strategies. Minimax Strategies. Zero Sum Games. Why Zero Sum Games? An Example. An Example
Everyone who has studied a game like poker knows the importance of mixing strategies With a bad hand, you often fold But you must bluff sometimes Lectures in MicroeconomicsCharles W Upton Zero Sum Games
More informationChess Algorithms Theory and Practice. Rune Djurhuus Chess Grandmaster runed@ifi.uio.no / runedj@microsoft.com October 3, 2012
Chess Algorithms Theory and Practice Rune Djurhuus Chess Grandmaster runed@ifi.uio.no / runedj@microsoft.com October 3, 2012 1 Content Complexity of a chess game History of computer chess Search trees
More informationChess Algorithms Theory and Practice. Rune Djurhuus Chess Grandmaster runed@ifi.uio.no / runedj@microsoft.com September 23, 2014
Chess Algorithms Theory and Practice Rune Djurhuus Chess Grandmaster runed@ifi.uio.no / runedj@microsoft.com September 23, 2014 1 Content Complexity of a chess game Solving chess, is it a myth? History
More informationSearch Algorithm in Software Testing and Debugging
Search Algorithm in Software Testing and Debugging HsuehChien Cheng Dec 8, 2010 Search Algorithm Search algorithm is a wellstudied field in AI Computer chess Hill climbing A search... Evolutionary Algorithm
More informationSEARCHING AND KNOWLEDGE REPRESENTATION. Angel Garrido
Acta Universitatis Apulensis ISSN: 15825329 No. 30/2012 pp. 147152 SEARCHING AND KNOWLEDGE REPRESENTATION Angel Garrido ABSTRACT. The procedures of searching of solutions of problems, in Artificial Intelligence
More informationAn Introduction to The A* Algorithm
An Introduction to The A* Algorithm Introduction The A* (AStar) algorithm depicts one of the most popular AI methods used to identify the shortest path between 2 locations in a mapped area. The A* algorithm
More informationGeneralized Widening
Generalized Widening Tristan Cazenave Abstract. We present a new threat based search algorithm that outperforms other threat based search algorithms and selective knowledgebased for open life and death
More informationBCS HIGHER EDUCATION QUALIFICATIONS Level 6 Professional Graduate Diploma in IT. March 2013 EXAMINERS REPORT. Knowledge Based Systems
BCS HIGHER EDUCATION QUALIFICATIONS Level 6 Professional Graduate Diploma in IT March 2013 EXAMINERS REPORT Knowledge Based Systems Overall Comments Compared to last year, the pass rate is significantly
More informationSmart Graphics: Methoden 3 Suche, Constraints
Smart Graphics: Methoden 3 Suche, Constraints Vorlesung Smart Graphics LMU München Medieninformatik Butz/Boring Smart Graphics SS2007 Methoden: Suche 2 Folie 1 Themen heute Suchverfahren Hillclimbing Simulated
More information10/13/11 Solution: Minimax with AlphaBeta Pruning and Progressive Deepening
10/1/11 Solution: Minimax with AlphaBeta Pruning and Progressive Deepening When answering the question in Parts C.1 and C. below, assume you have already applied minimax with alphabeta pruning and progressive
More informationArtificial Intelligence Exam DT2001 / DT2006 Ordinarie tentamen
Artificial Intelligence Exam DT2001 / DT2006 Ordinarie tentamen Date: 20100111 Time: 08:1511:15 Teacher: Mathias Broxvall Phone: 301438 Aids: Calculator and/or a SwedishEnglish dictionary Points: The
More informationOptimization in ICT and Physical Systems
27. OKTOBER 2010 in ICT and Physical Systems @ Aarhus University, Course outline, formal stuff Prerequisite Lectures Homework Textbook, Homepage and CampusNet, http://kurser.iha.dk/eeictmaster/tiopti/
More informationThe CrossPlatform Implementation
The CrossPlatform Implementation Of Draughts Game Valery Kirkizh State University of Aerospace Instrumentation SaintPetersburg, Russia Introduction Ageold Russian game Draughts; Crossplatform implementation,
More informationFactoring General Games using Propositional Automata
Factoring General Games using Propositional Automata Evan Cox, Eric Schkufza, Ryan Madsen and Michael R. Genesereth Stanford University, CA, USA Abstract In this paper we propose the design of a more robust
More informationArtificial Intelligence BEG471CO
Artificial Intelligence BEG471CO Year IV Semester: I Teaching Schedule Examination Scheme Hours/Week Theory Tutorial Practical Internal Assessment Final Total 3 1 3/2 Theory Practical * Theory** Practical
More informationD A T A M I N I N G C L A S S I F I C A T I O N
D A T A M I N I N G C L A S S I F I C A T I O N FABRICIO VOZNIKA LEO NARDO VIA NA INTRODUCTION Nowadays there is huge amount of data being collected and stored in databases everywhere across the globe.
More informationGame playing. Chapter 6. Chapter 6 1
Game playing Chapter 6 Chapter 6 1 Outline Games Perfect play minimax decisions α β pruning Resource limits and approximate evaluation Games of chance Games of imperfect information Chapter 6 2 Games vs.
More informationBig Data  Lecture 1 Optimization reminders
Big Data  Lecture 1 Optimization reminders S. Gadat Toulouse, Octobre 2014 Big Data  Lecture 1 Optimization reminders S. Gadat Toulouse, Octobre 2014 Schedule Introduction Major issues Examples Mathematics
More informationAcknowledgements I would like to thank both Dr. Carsten Furhmann, and Dr. Daniel Richardson for providing me with wonderful supervision throughout my
Abstract Game orientated application programming interfaces (API), built using Java, are intended to ease the development of Java games, on multiple platforms. Existing Java game APIs, tend to focus on
More informationComplete Solution of the EightPuzzle and the Benefit of Node Ordering in IDA*
Complete Solution of the EightPuzzle and the Benefit of Node Ordering in IDA* Alexander Reinefeld Paderborn Center for Parallel Computing Waxburger Str. 100, D33095 Paderborn, Germany Abstract The 8puzzle
More informationEvaluation of Different Task Scheduling Policies in MultiCore Systems with Reconfigurable Hardware
Evaluation of Different Task Scheduling Policies in MultiCore Systems with Reconfigurable Hardware Mahyar Shahsavari, Zaid AlArs, Koen Bertels,1, Computer Engineering Group, Software & Computer Technology
More informationCS Master Level Courses and Areas COURSE DESCRIPTIONS. CSCI 521 RealTime Systems. CSCI 522 High Performance Computing
CS Master Level Courses and Areas The graduate courses offered may change over time, in response to new developments in computer science and the interests of faculty and students; the list of graduate
More informationA Systematic Approach to ModelGuided Empirical Search for Memory Hierarchy Optimization
A Systematic Approach to ModelGuided Empirical Search for Memory Hierarchy Optimization Chun Chen, Jacqueline Chame, Mary Hall, and Kristina Lerman University of Southern California/Information Sciences
More informationComputer Science CS 4013/5013: Artificial Intelligence
Computer Science CS 4013/5013: Artificial Intelligence Instructor: Dr. McGovern Spring 2013 1 Course Overview Imagine that you are traveling to San Francisco for work and a friend tells you that you absolutely
More informationLoad Balancing. Load Balancing 1 / 24
Load Balancing Backtracking, branch & bound and alphabeta pruning: how to assign work to idle processes without much communication? Additionally for alphabeta pruning: implementing the youngbrotherswait
More information15381: Artificial Intelligence. Probabilistic Reasoning and Inference
538: Artificial Intelligence robabilistic Reasoning and Inference Advantages of probabilistic reasoning Appropriate for complex, uncertain, environments  Will it rain tomorrow? Applies naturally to many
More informationA LEVEL H446 COMPUTER SCIENCE. Code Challenges (1 20) August 2015
A LEVEL H446 COMPUTER SCIENCE Code Challenges (1 20) August 2015 We will inform centres about any changes to the specification. We will also publish changes on our website. The latest version of our specification
More informationBranchandPrice Approach to the Vehicle Routing Problem with Time Windows
TECHNISCHE UNIVERSITEIT EINDHOVEN BranchandPrice Approach to the Vehicle Routing Problem with Time Windows Lloyd A. Fasting May 2014 Supervisors: dr. M. Firat dr.ir. M.A.A. Boon J. van Twist MSc. Contents
More informationEmbedded Systems 20 REVIEW. Multiprocessor Scheduling
Embedded Systems 0   Multiprocessor Scheduling REVIEW Given n equivalent processors, a finite set M of aperiodic/periodic tasks find a schedule such that each task always meets its deadline. Assumptions:
More informationCourse 395: Machine Learning
Course 395: Machine Learning Lecturers: Maja Pantic (maja@doc.ic.ac.uk) Stavros Petridis (sp104@doc.ic.ac.uk) Goal (Lectures): To present basic theoretical concepts and key algorithms that form the core
More informationLaboratory work in AI: First steps in Poker Playing Agents and Opponent Modeling
Laboratory work in AI: First steps in Poker Playing Agents and Opponent Modeling Avram Golbert 01574669 agolbert@gmail.com Abstract: While Artificial Intelligence research has shown great success in deterministic
More informationGame Theory 1. Introduction
Game Theory 1. Introduction Dmitry Potapov CERN What is Game Theory? Game theory is about interactions among agents that are selfinterested I ll use agent and player synonymously Selfinterested: Each
More informationUniversity of Ostrava. Reasoning in Description Logic with Semantic Tableau Binary Trees
University of Ostrava Institute for Research and Applications of Fuzzy Modeling Reasoning in Description Logic with Semantic Tableau Binary Trees Alena Lukasová Research report No. 63 2005 Submitted/to
More informationA Review And Evaluations Of Shortest Path Algorithms
A Review And Evaluations Of Shortest Path Algorithms Kairanbay Magzhan, Hajar Mat Jani Abstract: Nowadays, in computer networks, the routing is based on the shortest path problem. This will help in minimizing
More informationSatisfiability Checking
Satisfiability Checking SATSolving Prof. Dr. Erika Ábrahám Theory of Hybrid Systems Informatik 2 WS 10/11 Prof. Dr. Erika Ábrahám  Satisfiability Checking 1 / 40 A basic SAT algorithm Assume the CNF
More informationMeasuring the Performance of an Agent
25 Measuring the Performance of an Agent The rational agent that we are aiming at should be successful in the task it is performing To assess the success we need to have a performance measure What is rational
More informationGenetic Algorithms and Sudoku
Genetic Algorithms and Sudoku Dr. John M. Weiss Department of Mathematics and Computer Science South Dakota School of Mines and Technology (SDSM&T) Rapid City, SD 577013995 john.weiss@sdsmt.edu MICS 2009
More informationMonte Carlo Tree Search and Opponent Modeling through Player Clustering in nolimit Texas Hold em Poker
Monte Carlo Tree Search and Opponent Modeling through Player Clustering in nolimit Texas Hold em Poker A.A.J. van der Kleij August 2010 Master thesis Artificial Intelligence University of Groningen, The
More informationApproximation Algorithms
Approximation Algorithms or: How I Learned to Stop Worrying and Deal with NPCompleteness Ong Jit Sheng, Jonathan (A0073924B) March, 2012 Overview Key Results (I) General techniques: Greedy algorithms
More informationLearning is a very general term denoting the way in which agents:
What is learning? Learning is a very general term denoting the way in which agents: Acquire and organize knowledge (by building, modifying and organizing internal representations of some external reality);
More informationAutomatabased Verification  I
CS3172: Advanced Algorithms Automatabased Verification  I Howard Barringer Room KB2.20: email: howard.barringer@manchester.ac.uk March 2006 Supporting and Background Material Copies of key slides (already
More informationVideo Game Description Language (VGDL) and the Challenge of Creating Agents for General Video Game Playing (GVGP)
Video Game Description Language (VGDL) and the Challenge of Creating Agents for General Video Game Playing (GVGP) Diego Perez, University of Essex (Colchester, UK) dperez@essex.ac.uk Tainan, Taiwan, 2015
More informationOffline 1Minesweeper is NPcomplete
Offline 1Minesweeper is NPcomplete James D. Fix Brandon McPhail May 24 Abstract We use Minesweeper to illustrate NPcompleteness proofs, arguments that establish the hardness of solving certain problems.
More informationInstruction scheduling
Instruction ordering Instruction scheduling Advanced Compiler Construction Michel Schinz 2015 05 21 When a compiler emits the instructions corresponding to a program, it imposes a total order on them.
More informationLogic in general. Inference rules and theorem proving
Logical Agents Knowledgebased agents Logic in general Propositional logic Inference rules and theorem proving First order logic Knowledgebased agents Inference engine Knowledge base Domainindependent
More informationCpSc810 Goddard Notes Chapter 7. Expert Systems
CpSc810 Goddard Notes Chapter 7 Expert Systems Expert systems are designed to provide expert quality performance on domainspecific problems. In this chapter we look at the structure of expert systems focusing
More informationTeaching Introductory Artificial Intelligence with PacMan
Teaching Introductory Artificial Intelligence with PacMan John DeNero and Dan Klein Computer Science Division University of California, Berkeley {denero, klein}@cs.berkeley.edu Abstract The projects that
More information6.231 Dynamic Programming and Stochastic Control Fall 2008
MIT OpenCourseWare http://ocw.mit.edu 6.231 Dynamic Programming and Stochastic Control Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 6.231
More informationCHAPTER 3 SECURITY CONSTRAINED OPTIMAL SHORTTERM HYDROTHERMAL SCHEDULING
60 CHAPTER 3 SECURITY CONSTRAINED OPTIMAL SHORTTERM HYDROTHERMAL SCHEDULING 3.1 INTRODUCTION Optimal shortterm hydrothermal scheduling of power systems aims at determining optimal hydro and thermal generations
More informationEquilibrium computation: Part 1
Equilibrium computation: Part 1 Nicola Gatti 1 Troels Bjerre Sorensen 2 1 Politecnico di Milano, Italy 2 Duke University, USA Nicola Gatti and Troels Bjerre Sørensen ( Politecnico di Milano, Italy, Equilibrium
More informationEmbedded Systems 20 BF  ES
Embedded Systems 201  Multiprocessor Scheduling REVIEW Given n equivalent processors, a finite set M of aperiodic/periodic tasks find a schedule such that each task always meets its deadline. Assumptions:
More informationCS104: Data Structures and ObjectOriented Design (Fall 2013) October 24, 2013: Priority Queues Scribes: CS 104 Teaching Team
CS104: Data Structures and ObjectOriented Design (Fall 2013) October 24, 2013: Priority Queues Scribes: CS 104 Teaching Team Lecture Summary In this lecture, we learned about the ADT Priority Queue. A
More information6.231 Dynamic Programming Midterm, Fall 2008. Instructions
6.231 Dynamic Programming Midterm, Fall 2008 Instructions The midterm comprises three problems. Problem 1 is worth 60 points, problem 2 is worth 40 points, and problem 3 is worth 40 points. Your grade
More informationProblem of the Month: Fair Games
Problem of the Month: The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards:
More informationMastering Quoridor. Lisa Glendenning THESIS. Submitted in Partial Fulfillment of the Requirements for the Degree of
Mastering Quoridor by Lisa Glendenning THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science Computer Science The University of New Mexico Albuquerque, New Mexico
More informationCollege of information technology Department of software
University of Babylon Undergraduate: third class College of information technology Department of software Subj.: Application of AI lecture notes/20112012 ***************************************************************************
More informationManagement Decision Making. Hadi Hosseini CS 330 David R. Cheriton School of Computer Science University of Waterloo July 14, 2011
Management Decision Making Hadi Hosseini CS 330 David R. Cheriton School of Computer Science University of Waterloo July 14, 2011 Management decision making Decision making Spreadsheet exercise Data visualization,
More informationExtending the Role of Causality in Probabilistic Modeling
Extending the Role of Causality in Probabilistic Modeling Joost Vennekens, Marc Denecker, Maurice Bruynooghe {joost, marcd, maurice}@cs.kuleuven.be K.U. Leuven, Belgium Causality Causality is central concept
More informationSTUDY OF PROJECT SCHEDULING AND RESOURCE ALLOCATION USING ANT COLONY OPTIMIZATION 1
STUDY OF PROJECT SCHEDULING AND RESOURCE ALLOCATION USING ANT COLONY OPTIMIZATION 1 Prajakta Joglekar, 2 Pallavi Jaiswal, 3 Vandana Jagtap Maharashtra Institute of Technology, Pune Email: 1 somanprajakta@gmail.com,
More informationAn evolutionary learning spam filter system
An evolutionary learning spam filter system Catalin Stoean 1, Ruxandra Gorunescu 2, Mike Preuss 3, D. Dumitrescu 4 1 University of Craiova, Romania, catalin.stoean@inf.ucv.ro 2 University of Craiova, Romania,
More informationHistory of Artificial Intelligence. Introduction to Intelligent Systems
History of Artificial Intelligence Introduction to Intelligent Systems What is An Intelligent System? A more difficult question is: What is intelligence? This question has puzzled philosophers, biologists
More informationGlobally Optimal Crowdsourcing Quality Management
Globally Optimal Crowdsourcing Quality Management Akash Das Sarma Stanford University akashds@stanford.edu Aditya G. Parameswaran University of Illinois (UIUC) adityagp@illinois.edu Jennifer Widom Stanford
More informationM.S. in Transportation
1 M.S. in Transportation Degree Requirements Students who lack an appropriate background may be admitted and required to make up deficiencies by taking a program of bridge courses designed in consultation
More informationProblems often have a certain amount of uncertainty, possibly due to: Incompleteness of information about the environment,
Uncertainty Problems often have a certain amount of uncertainty, possibly due to: Incompleteness of information about the environment, E.g., loss of sensory information such as vision Incorrectness in
More informationA Constraint Programming based Column Generation Approach to Nurse Rostering Problems
Abstract A Constraint Programming based Column Generation Approach to Nurse Rostering Problems Fang He and Rong Qu The Automated Scheduling, Optimisation and Planning (ASAP) Group School of Computer Science,
More informationECE 250 Data Structures and Algorithms MIDTERM EXAMINATION 20081023/5:156:45 REC200, EVI350, RCH106, HH139
ECE 250 Data Structures and Algorithms MIDTERM EXAMINATION 20081023/5:156:45 REC200, EVI350, RCH106, HH139 Instructions: No aides. Turn off all electronic media and store them under your desk. If
More informationCS510 Software Engineering
CS510 Software Engineering Propositional Logic Asst. Prof. Mathias Payer Department of Computer Science Purdue University TA: Scott A. Carr Slides inspired by Xiangyu Zhang http://nebelwelt.net/teaching/15cs510se
More informationIntroduction To Genetic Algorithms
1 Introduction To Genetic Algorithms Dr. Rajib Kumar Bhattacharjya Department of Civil Engineering IIT Guwahati Email: rkbc@iitg.ernet.in References 2 D. E. Goldberg, Genetic Algorithm In Search, Optimization
More informationThe Taxman Game. Robert K. Moniot September 5, 2003
The Taxman Game Robert K. Moniot September 5, 2003 1 Introduction Want to know how to beat the taxman? Legally, that is? Read on, and we will explore this cute little mathematical game. The taxman game
More informationA LeastCertainty Heuristic for Selective Search 1
A LeastCertainty Heuristic for Selective Search 1 Paul E. Utgoff utgoff@cs.umass.edu Department of Computer and Information Science, University of Massachusetts, Amherst, MA 01003 Richard P. Cochran cochran@cs.umass.edu
More informationIntroduction to Machine Learning and Data Mining. Prof. Dr. Igor Trajkovski trajkovski@nyus.edu.mk
Introduction to Machine Learning and Data Mining Prof. Dr. Igor Trakovski trakovski@nyus.edu.mk Neural Networks 2 Neural Networks Analogy to biological neural systems, the most robust learning systems
More informationAlok Gupta. Dmitry Zhdanov
RESEARCH ARTICLE GROWTH AND SUSTAINABILITY OF MANAGED SECURITY SERVICES NETWORKS: AN ECONOMIC PERSPECTIVE Alok Gupta Department of Information and Decision Sciences, Carlson School of Management, University
More informationIntegration of ACO in a Constraint Programming Language
Integration of ACO in a Constraint Programming Language Madjid Khichane 12, Patrick Albert 1, and Christine Solnon 2 1 ILOG 2 LIRIS, UMR 5205 CNRS / University of Lyon ANTS 08 Motivations Ant Colony Optimization
More informationRoulette Wheel Selection Game Player
Macalester College DigitalCommons@Macalester College Honors Projects Mathematics, Statistics, and Computer Science 512013 Roulette Wheel Selection Game Player Scott Tong Macalester College, stong101@gmail.com
More informationNetwork Flow I. Lecture 16. 16.1 Overview. 16.2 The Network Flow Problem
Lecture 6 Network Flow I 6. Overview In these next two lectures we are going to talk about an important algorithmic problem called the Network Flow Problem. Network flow is important because it can be
More informationSelected Topics in Artificial Intelligence. Lectures presented at WWSI in October 2011
Selected Topics in Artificial Intelligence Lectures presented at WWSI in October 2011 1 What is AI? Goal: Teaching machines to act intelligently Origins: Maths, logic, computer science, philosophy, psychology,
More informationData Structures and Algorithms Written Examination
Data Structures and Algorithms Written Examination 22 February 2013 FIRST NAME STUDENT NUMBER LAST NAME SIGNATURE Instructions for students: Write First Name, Last Name, Student Number and Signature where
More informationIAI : Expert Systems
IAI : Expert Systems John A. Bullinaria, 2005 1. What is an Expert System? 2. The Architecture of Expert Systems 3. Knowledge Acquisition 4. Representing the Knowledge 5. The Inference Engine 6. The ReteAlgorithm
More informationGRAPH THEORY LECTURE 4: TREES
GRAPH THEORY LECTURE 4: TREES Abstract. 3.1 presents some standard characterizations and properties of trees. 3.2 presents several different types of trees. 3.7 develops a counting method based on a bijection
More informationClassification/Decision Trees (II)
Classification/Decision Trees (II) Department of Statistics The Pennsylvania State University Email: jiali@stat.psu.edu Right Sized Trees Let the expected misclassification rate of a tree T be R (T ).
More informationML for the Working Programmer
ML for the Working Programmer 2nd edition Lawrence C. Paulson University of Cambridge CAMBRIDGE UNIVERSITY PRESS CONTENTS Preface to the Second Edition Preface xiii xv 1 Standard ML 1 Functional Programming
More informationRealtime Scheduling Using Minimin Search
From: AAAI Technical Report SS9201. Compilation copyright 1992, AAAI (www.aaai.org). All rights reserved. Realtime Scheduling Using Minimin Search Prasad Tadepalli and Varad Joshi Department of Computer
More information20 CODE CHALLENGES. GCSE (9 1) Computer Science GCSE REFORM. February 2015
February 2015 GCSE (9 1) Computer Science GCSE REFORM We will inform centres about any changes to the specification. We will also publish changes on our website. The latest version of our specification
More informationLecture. Simulation and optimization
Course Simulation Lecture Simulation and optimization 1 4/3/2015 Simulation and optimization Platform busses at Schiphol Optimization: Find a feasible assignment of bus trips to bus shifts (driver and
More informationLogical Agents. Explorations in Artificial Intelligence. Knowledgebased Agents. Knowledgebase Agents. Outline. Knowledge bases
Logical Agents Explorations in Artificial Intelligence rof. Carla. Gomes gomes@cs.cornell.edu Agents that are able to: Form representations of the world Use a process to derive new representations of the
More informationSingle machine models: Maximum Lateness 12 Approximation ratio for EDD for problem 1 r j,d j < 0 L max. structure of a schedule Q...
Lecture 4 Scheduling 1 Single machine models: Maximum Lateness 12 Approximation ratio for EDD for problem 1 r j,d j < 0 L max structure of a schedule 0 Q 1100 11 00 11 000 111 0 0 1 1 00 11 00 11 00
More informationImproving Depthfirst PNSearch: 1 + ε Trick
Improving Depthfirst PNSearch: 1 + ε Trick Jakub Pawlewicz, Łukasz Lew {pan,lew}@mimuw.edu.pl Institute of Informatics, Warsaw University Banacha 2, 02097 Warsaw, Poland Abstract. Various efficient
More informationEvolutionary Detection of Rules for Text Categorization. Application to Spam Filtering
Advances in Intelligent Systems and Technologies Proceedings ECIT2004  Third European Conference on Intelligent Systems and Technologies Iasi, Romania, July 2123, 2004 Evolutionary Detection of Rules
More informationNear Optimal Solutions
Near Optimal Solutions Many important optimization problems are lacking efficient solutions. NPComplete problems unlikely to have polynomial time solutions. Good heuristics important for such problems.
More informationBounded Treewidth in Knowledge Representation and Reasoning 1
Bounded Treewidth in Knowledge Representation and Reasoning 1 Reinhard Pichler Institut für Informationssysteme Arbeitsbereich DBAI Technische Universität Wien Luminy, October 2010 1 Joint work with G.
More informationSudoku Puzzles Generating: from Easy to Evil
Team # 3485 Page 1 of 20 Sudoku Puzzles Generating: from Easy to Evil Abstract As Sudoku puzzle becomes worldwide popular among many players in different intellectual levels, the task is to devise an algorithm
More informationRomania. Analyst Presentation. 22 nd October 2015
Romania Analyst Presentation 22 nd October 2015 Contents Romania Cinema City development Perspectives for Romania Forecast for screen development Financial and operating results Performance Business model
More informationChapter 13: Binary and MixedInteger Programming
Chapter 3: Binary and MixedInteger Programming The general branch and bound approach described in the previous chapter can be customized for special situations. This chapter addresses two special situations:
More informationSingleLink Failure Detection in AllOptical Networks Using Monitoring Cycles and Paths
SingleLink Failure Detection in AllOptical Networks Using Monitoring Cycles and Paths Satyajeet S. Ahuja, Srinivasan Ramasubramanian, and Marwan Krunz Department of ECE, University of Arizona, Tucson,
More information